Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer.
نویسندگان
چکیده
We present an approach for rapidly and quantitatively mapping tissue absorption and scattering spectra in a wide-field, noncontact imaging geometry by combining multifrequency spatial frequency domain imaging (SFDI) with a computed-tomography imaging spectrometer (CTIS). SFDI overcomes the need to spatially scan a source, and is based on the projection and analysis of periodic structured illumination patterns. CTIS provides a throughput advantage by simultaneously diffracting multiple spectral images onto a single CCD chip to gather spectra at every pixel of the image, thus providing spatial and spectral information in a single snapshot. The spatial-spectral data set was acquired 30 times faster than with our wavelength-scanning liquid crystal tunable filter camera, even though it is not yet optimized for speed. Here we demonstrate that the combined SFDI-CTIS is capable of rapid, multispectral imaging of tissue absorption and scattering in a noncontact, nonscanning platform. The combined system was validated for 36 wavelengths between 650-1000 nm in tissue simulating phantoms over a range of tissue-like absorption and scattering properties. The average percent error for the range of absorption coefficients (μa) was less than 10% from 650-800 nm, and less than 20% from 800-1000 nm. The average percent error in reduced scattering coefficients (μs') was less than 5% from 650-700 nm and less than 3% from 700-1000 nm. The SFDI-CTIS platform was applied to a mouse model of brain injury in order to demonstrate the utility of this approach in characterizing spatially and spectrally varying tissue optical properties.
منابع مشابه
An iterative method to estimate x-ray attenuation coefficients in computed tomography
Introduction: The basis of image formation in Computed Tomography (CT) lies in the x-ray linear attenuation coefficient of the scanned material. Compton scattering and photoelectric effect are the dominant interactions of the x-ray photons with the subject, in the range of diagnostic radiology. These two coefficients are important in tissue characterization by Dual-Energy CT (D...
متن کاملDesign of Small Animal Computed Tomography Imaging for in vitro and in vivo Studies
Introduction: Mini Computed Tomography (mini-CT) was suggested in biomedical research to investigate tissues and small animals. We present designed and built a mini x-ray computed tomography (mini-CT) for small animals as well as industrial component imaging. Materials and Methods: The system used in this study includes a X-ray tube 20kV to 160kV and a flat pa...
متن کاملComparison of entrance skin dose in the hip region in the imaging of the lower extremity by CT scan and EOS
Introduction: Increasing in refer to computed tomography (CT-scan) imaging causes to increase in cumulative dose. Stereoradiography (EOS) is an X-ray imaging technology that, by eliminating scattering radiation, reduces patient's absorption dose and improves image quality. Materials and Methods: This cross-sectional study was carried out in a hosp...
متن کاملSpectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملBimodal magnetic resonance imaging-computed tomography nanoprobes: A Review
Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2011